Database Management System (DBMS)

A New Approach to Data Management

by
Kudang B. Seminar

Information System (IS) Model
Data vs Information

Data: raw facts or observations

Information: data that have been transformed into a meaningful and useful context for specific end users

Data Sales person
Sales Values
Sales Units

Data Processing
Sales Analysis

Sample Tabular View of Sales

<table>
<thead>
<tr>
<th>Last Name:</th>
<th>Buchanan</th>
<th>Callahan</th>
<th>Dario</th>
<th>Dodsworth</th>
<th>Fuller</th>
<th>King</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years</td>
<td>Quarters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>Qtr 1</td>
<td>$3,050.02</td>
<td>$1,060.00</td>
<td>$4,092.48</td>
<td>$4,304.30</td>
<td>$1,936.00</td>
<td>$33,165.20</td>
</tr>
<tr>
<td></td>
<td>Qtr 2</td>
<td>$14,088.36</td>
<td>$8,120.70</td>
<td>$21,962.28</td>
<td>$5,530.21</td>
<td>$13,567.86</td>
<td>$77,447.39</td>
</tr>
<tr>
<td></td>
<td>Qtr 3</td>
<td>$17,647.20</td>
<td>$19,150.70</td>
<td>$30,081.76</td>
<td>$9,694.51</td>
<td>$17,211.45</td>
<td>$110,622.79</td>
</tr>
<tr>
<td></td>
<td>Qtr 4</td>
<td>$3,237.12</td>
<td>$19,992.23</td>
<td>$17,885.82</td>
<td>$986.80</td>
<td>$11,438.38</td>
<td>$15,108.34</td>
</tr>
<tr>
<td>1997</td>
<td>Qtr 1</td>
<td>$6,047.67</td>
<td>$8,065.72</td>
<td>$16,325.60</td>
<td>$5,922.20</td>
<td>$22,136.67</td>
<td>$16,487.92</td>
</tr>
<tr>
<td></td>
<td>Qtr 2</td>
<td>$12,975.80</td>
<td>$9,049.99</td>
<td>$32,384.91</td>
<td>$6,255.05</td>
<td>$16,188.80</td>
<td>$20,263.93</td>
</tr>
<tr>
<td></td>
<td>Qtr 3</td>
<td>$6,572.57</td>
<td>$16,625.08</td>
<td>$29,644.07</td>
<td>$12,499.76</td>
<td>$21,446.29</td>
<td>$8,047.00</td>
</tr>
<tr>
<td></td>
<td>Qtr 4</td>
<td>$31,433.16</td>
<td>$66,954.02</td>
<td>$99,803.36</td>
<td>$24,412.89</td>
<td>$71,168.14</td>
<td>$59,927.19</td>
</tr>
<tr>
<td>1998</td>
<td>Qtr 1</td>
<td>$19,481.88</td>
<td>$27,030.65</td>
<td>$36,281.50</td>
<td>$31,513.21</td>
<td>$36,822.56</td>
<td>$19,757.43</td>
</tr>
<tr>
<td></td>
<td>Qtr 2</td>
<td>$21,000.00</td>
<td>$30,897.10</td>
<td>$34,214.23</td>
<td>$10,629.43</td>
<td>$39,307.62</td>
<td>$24,802.41</td>
</tr>
<tr>
<td></td>
<td>Qtr 3</td>
<td>$19,691.88</td>
<td>$47,727.95</td>
<td>$80,566.23</td>
<td>$42,142.64</td>
<td>$73,790.18</td>
<td>$44,526.89</td>
</tr>
<tr>
<td></td>
<td>Qtr 4</td>
<td>$68,792.26</td>
<td>$123,342.67</td>
<td>$187,277.35</td>
<td>$76,450.04</td>
<td>$162,769.78</td>
<td>$119,519.24</td>
</tr>
</tbody>
</table>

[Show Raw Data]
Sample Pivot Chart for Sale Analysis

Akusisi Data Geografis
Varieties of Information Products
Extracted from Spatial Database
Database

Integrated collection of inter-related data designed for the need of an enterprise.

Database Management Systems (DBMS)

Integrated collection of computer tools (software tools) designed for accessing and maintaining database.
Application Programs on Top of DBMS

Advantages of DBMS

- Data become shareable resources for variety of users or application programs
- Method of data access and maintenance becomes uniform and consistent
- Redundancy data and heterogeneity of data structures are minimized
- Data independence
- Logical relationship among data are well maintained
Conventional Data Management

• Data belong to a specific application program
• Lifetime of data is limited by the lifetime of application program
• Difficult data sharing
• Data redundancy and inconsistency is Introduced
• Methods of data access are not uniform
• Data structures are likely to be incompatible

Examples of software tools in DBMS

• Designing: ERD (Entity Relationship Diagram), DDL (Data Definition Language)
• Inputing & Manipulating: DML (Data Modification Language), QL (Query Language), Multimedia processor
• Searching & Retrieving: QL (Query Language): SQL * QBE
• Converting & Squeezing: Encoder & Decoder, Data Converter & Squeezer, Multimedia processor
• Optimizing: Data Organizer & Analyzer
• Calculating: Math & statistical functions
• Presenting: Report Generator, Multimedia Processor
Data Modeling: Methods & Tools

Hierarchy of Data Abstractions

View 1 View 2 ... View n

Conceptual schema

Internal schema

Database

External Level
Conceptual Level
Internal Level
Physical Level
Data Abstraction (cont.)

- **External Level**: describes only part of database relevant to specific users.
- **Conceptual Level**: describes "what" to store (entity & attributes), constraints, semantics, data integrity & security, also relationships among data.
- **Internal Data**: describes "how" data is organized & stored (memory allocation, indexing, compressing).
- **Physical Level**: describes file structures comprising database.

Data Model

Definition: Integrated collection of concepts, theories, axioms, constraints for description, organization, validation, and interpretation of data.

Usage: a fundamental set of tools & methods to consistently & uniformly view, organize, and treat database.
Types Data Models

Record-Based Model
- Relational
- Hierarchical
- Network

Object-Based Model
- Functional
- Object Oriented

Relational Data Model
Representation of data as an integrated collections of inter-related tables
Samples of Relational Data

<table>
<thead>
<tr>
<th>CourseCode</th>
<th>CourseName</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIM105</td>
<td>MIS</td>
<td>3</td>
</tr>
<tr>
<td>AKO104</td>
<td>DBMS</td>
<td>3</td>
</tr>
</tbody>
</table>

Student - Take

<table>
<thead>
<tr>
<th>ID</th>
<th>StudentName</th>
<th>ID</th>
<th>CourseCode</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMA.101</td>
<td>Rudi Wibowo</td>
<td>MMA.101</td>
<td>SIM105</td>
</tr>
<tr>
<td>MMA.102</td>
<td>Melinda</td>
<td>MMA.101</td>
<td>AKO104</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMA.102</td>
<td>SIM105</td>
</tr>
</tbody>
</table>

Terminology

<table>
<thead>
<tr>
<th>In This Document</th>
<th>Formal Terms</th>
<th>Many Database Manuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relational Table</td>
<td>Relation</td>
<td>Table</td>
</tr>
<tr>
<td>Column</td>
<td>Attribute</td>
<td>Field</td>
</tr>
<tr>
<td>Row</td>
<td>Tuple</td>
<td>Record</td>
</tr>
</tbody>
</table>
Hierarchical Data Model

Representation of data as a tree structure (one-to-many relationships)

Sample of Hierarchical Data

- Country
 - Province
 - City
 - Province
 - City
Network Data Model

Representation of data as a network structure (many-to-many relationships)

Sample of Network Model

- Department
- Department
- Employee
- Employee
- Research Work
- Projects
- Fund Source
- Fund Source
Functional Data Model

- Representation of data using logic: *predicate logic, proportional logic, & functional logic*
- Mainly for expert system & Artificial Intelligence (AI)

Facts:
- `Is-bird (pigeon)`
- `Is-bird (?x) -> Has-wings (?x)`
- `Greater-Than(Body-Temperature-Of (?x)), 37) \& Is-human (?x)`
- `Has-wings (?y) -> Can-fly (?y)`
- `Can-fly (pigeon)`
- `Has-wings (pigeon)`

Conclusion:
- `Is-Sick (?x)`

Derived Facts:
- `Has-wings (pigeon)`

Object-Oriented Data Model

Encapsulation of attributes & behaviors

Inheritance of object attributes & behaviors: single or multiple inheritance

Interobject communication by message exchange
Sample of Object-Oriented Model

Creature
- Breathing
- Reproducing
- Eating

Human
- IS-A Creature
- Intelligent

Animal
- IS-A Creature
- Less Intelligent

Student
- IS-A Human
- Enrolled in University

Herbivor
- IS-A Animal
- Eats plants

Rudi Wibowo
- Instance-of Student
 - Nrp: MMA.101

Eli Rosida
- Instance-of Student
 - Nrp: MMA.102